Fuego Quickstart guide

Cogent Embedded Inc.
http://cogentembedded. com

March 21, 2016

Abstract

This document is the complete reference for Fuego test system. It con-
tains installation guide, basic usage guide, step-by-step guides for adding
test board and integrating a test. In later chapters it is described how
test overlays and pdf test report generation work.

Contents

[1__Introductionl

2__Installationl
2.1 Prerequisites| o
2.2 Running install script| 0 0oL,
2.3 Installing toolchains and sysroots|
P31 Using meta-fuego OE layer for generating toolchain|
2.4 Configuring tools.sh file|
2.4.1 Using custom toolchain|

&

Boards configuration|
3.1 Adding a target in Jenkins interface|
8.2 Writing the board config overlay|

™

Running tests|

4.1 Running single tests| oo o000
4.2 Running a group of tests|. L oo
4.3 Viewing PDF reports|. 0oL,

Exl

Adding a sample test|

5.1 Adding Test Plan files] o o o v v v i it

0.2 Addingspectile]. o0 oo

5.3 ing test script| Lo

5.4 Adding test to frontend|o,
p.4.1 Adding plot paramters to tests.infol

(S
&
)
/2]
o
o
=
Y
wn
7))
ol
7]
o
=
=¥
=}
2
o
=
5

<
/)]

6.2 Overlay format| Lo
[6.3 Overlay and class relationship examplef.

[6.4 Fuego classes and overlays organization|

[7.1 Specfileformat|.o o oo oo

[7.2 Test plan file format|o o000
(.3 _Thealgorithm|.,
[7.4 Test plan / test spec relationship example|

Reports

g

<

S Ot Ot ot ot ot QN

~ NN

1 Introduction

Testing evaluation boards (and final products based on them) is not easy. There
is a number of software products made for that very purpose, the most eminent
of which is [Laval

From our point of view, LAVA is hard to extend both in terms of the engine
and its frontend. On the other hand, the core of Fuego is based on shell scripts
that can be trivially extended and uses Jenkins which is well tested and has
lots of available plugins to extend the framework with additional features (e.g.
e-mail notification of test results).

The Fuego framework was designed to provide a core meeting a few points:

It is usable out of the box: Fuego includes 60+ prepackaged tests, including
benchmark statistics, plotting and reports generation.

It is highly custmizable on the front-end side (thanks to the availability
of tons of plugins for Jenkins) and also on the backend side, which relies
on a simple core written in bash;

It allows for flexible test configuration using such notions as test specifi-
cations and test plans |7}

It supports running groups of tests in a batch and generating reports ;
It does not impose any demands on boards or distributions;

It allows easy yet flexible board setup. All you need to do to add a
new board is just define some environment variables (block devices/mount
points, IP addr, etc.) in a board config file.

As you can see, our goal is to provide a flexible framework with seemless
customization and an easy out-of-the-box experience.

https://wiki.linaro.org/Platform/LAVA

2 Installation

2.1 Prerequisites
e Any 64-bit Linux with Docker version 1.8.3 or above.

e Web browser with javascript and CSS support.

2.2 Running install script

Simply run install.sh script. It will create a docker image with Fuego installed.
When it’s done you should create and start a docker container running the
following commands from top directory:

e fuego-host-script s/docker-create-container.sh.
e fuego-host-scripts/docker-start-container.sh.

When container is started, Fuego web interface will be available on local
machine at port 8080.

Please note that board configuration, jenkins config.xml file, build logs
and toolchains are stored under userdata catalogue that is mounted as external
volume to docker container under /userdata path. This allows to preserve all
configuration when creating a new docker container.

In the rest of the document /userdata/... paths denote paths inside docker
container.
Some files and catalogues under /userdata/... are symlinked inside Fuego

engine and Jenkins paths. Please see Init Userdata section in Dockerfile for
more details.

2.3 Installing toolchains and sysroots

You need toolchains and sysroots to build tests for different platforms.

2.3.1 Using meta-fuego OE layer for generating toolchain

For convenience we provide a yocto layer that includes necessary software for
target system: |custom layer. You can use this layer to generate toolchain and
sysroot (using bitbake meta-toolchain) with all libraries and headers needed
for building tests. See Poky Documentation| for more information.

Toolchains and sysroots should generally be stored in /userdata/toolchains
and installed from within docker container.

2.4 Configuring tools.sh file

FUEGO_ENGINE_PATH/scripts/tools.sh file is used to setup paths and compile
flags for each platform.

For poky-generated toolchains one should source envirnoment file and set
the following variables:

https://www.docker.com/
http://localhost:8080
https://bitbucket.org/cogentembedded/meta-fuego/
http://www.yoctoproject.org/docs/1.6/adt-manual/adt-manual.html

e SDKROOT - path to rootfs
e PREFIX - gce prefix, like arm-blabla-linux-gnueabi
e HOST - like PREFIX

Also not code saving original $PATH to $0RIG_PATH since envirnoment script
changes it.
See [L. 5] for example.

2.4.1 Using custom toolchain

For using custom toolchain you additionally must define the following vari-
ables: PATH, PKG_CONFIG_SYSROOT_DIR, PKG_CONFIG_PATH, CC, CXX, CPP,
AS, LD, RANLIB, AR, NM, CFLAGS, CXXFLAGS, LDFLAGS, CPPFLAGS, ARCH,
CROSS_COMPILE.

You can use environment-setup-core2-32-osv-linux script as reference.

3 Boards configuration

In this document we will use such notions as targets and boards. Here is what
they mean:

Target or Node denotes a front-end Jenkins entity. Jenkins jobs are run on
targets.

Board denotes a back-end entity, such as a physical board (specifically, the
board or device to run tests on).

Board configuration is stored in FUEGO_ENGINE_PATH/overlays/boards/<boardname>.board,

where <boardname> is the respective name of the target.

3.1 Adding a target in Jenkins interface

The simplest method of adding a new target is to copy from an existing one.
We provide template-dev board for that purpose.

1. Open a browser window to the Fuego web interface
2. Click on Target status
Click on New node

Fill in the Node name input field witht he name of the new board

ovok W

Choose Copy Existing Node. And enter name of the source node, namely,
template-dev

6. You will be forwarded to node configuration page. Locate the Environment
variables section in Node Properties. Specify the path to board config file
[3.2] using the variable BOARD OVERLAY.

3.2 Writing the board config overlay

Board config file is an overlay (See that must inherit base-board and
include base-params base classes (in that order).

The following is the step-by-step description of all mandatory environment
variables that should be set by this file:

TRANSPORT: defines how Fuego should communicate with the board. Currently
only ssh is supported;

IPADDR: IP address or host name of board;
SSH_PORT: ssh port number of board;
LOGIN: user name for ssh login;

PASSWORD: password for ssh login;

http://localhost:8080/

FUEGO_HOME: path to the directory on device the tests will run from;

PLATFORM: architecture of the board. Currently ia32, arm and mips are sup-
ported. Used by some of tests during compilation.

The following variables specify devices and mount points that are used
by some file system tests: SATA_DEV, SATA_MP, USB_DEV, USB_MP, MMC_DEV,
MMC_MP.

4 Running tests

4.1 Running single tests

1. From the main page open Functional or Benchmarks tab.
2. Click on the test name.

3. Click on Run test now.
Here you can set test run parameters. The most relevant are:

Device: Choose a target the test will be run on.
Reboot: If checked target device will be rebooted before running test.
Rebuild: Rebuild the test.

TESTPLAN: (optional) Derive test parameters from test specifications from
chose testplan. For testplans see 7]

Press Run test button. The test is scheduled for running. If no tests are
executed on target it will be run immediately. It will appear in the left frame
name Test run history. There you can see all this specific test results (including
currenlty running one). They can be of a few types:

Solid green circle: The test has been successefully run.
Solid red circle: The test has failed.
Flashing circle: The test is currently running.

If you point mouse over the date of test run the pop-up menu appears from
where you can go to Console output. There you can view the complete log of
test run.

4.2 Running a group of tests

1. From the main page open Batch runs.

2. Click on Run SELECTED tests on SELECTED targets.
3. Click on Run test now.

4. Choose a targetf]

5. Mark tests/benchmarks you would like to run.

ISome tests require rebuilding if their parameters were changed.
2Reports generation is implemented only for the first target selected and only for Run
SELECTED tests on SELECTED batch run

6. Enter test plan to TESTPLAN variable. Test plan is mandatory for batch
runs.

7. Click on Run test button.

The batch test run is scheduled for running on target. On the test page
there is a list of running tests (their statuses are the same as in [4.1]).

When batch run is finished you can view generated PDF report.
4.3 Viewing PDF reports

1. From the batch test run page click on Workspace link

2. Click on pdf reports| folder.

3. Click the bottommost pdf file.
It has <target>.<date>.<testrun>.json.xml.pdf format.

10

http://localhost:8080/view/batch%20runs/job/Run%20SELECTED%20tests%20on%20SELECTED%20targets/ws/pdf_reports/

5 Adding a sample test

This section describes how to integrate tests to OSV. We will add a simple test
that calls bc computing a value passed through spec parameter.

5.1 Adding Test Plan files

Create FUEGO_ENGINE_PATH/overlays/testplans/testplan_bc_expl.json[L.
3] and testplan_bc_exp2. json[L. 4] files.

As you can see we’ve created two testplan files which reference two specs.
Testplan can reference multiple specs for different tests, so for example we could
run all filesystem tests with specific block device.

5.2 Adding spec file

Create FUEGO_ENGINE_PATH/overlays/test_specs/Benchmark.bc.spec|L. @
file.

This spec file contatins two cases: bc-expl that generates EXPR1, EXPR2
variable and assignes it ““2%2’?, ¢“3%3’’ values E| and bc-spec-exp2 that does the
same but with ¢2+2°> and ¢“3+3’’ values. These variables is inteded to be used
inside test script for controlling different test cases. And we will use it as a
parameter to bc-device.sh script.

You don’t usually need more than one spec files, because all different cases
can be listed in one file.

5.3 Adding test script

Test script is the bash file that runs when test is executed on target. Create it|[L.
7] with the path FUEGO_ENGINE_PATH/tests/Benchmark.bc/bc-script.sh. This
file should meet a strict format with following definitions:

tarball name of the tarball;
test_build should contain test build commands;

test_deploy should contain commands that deploy test to device;
put command is usually used;

test_run should contain all steps for actual test execution.

Generic benchmark/test script can be sourced if test meets common patterns.
In this particular example benchmark. sh is sourced that will execute these
steps (and some other like overlay prolog file and reports generation).

3Any variable defined in board config file[??] or in (inherited) base ﬁle can be used.
For example $MINNOW_SATA_DEV

11

For testing purposes we will use a simple script that is executed on device.
It accepts two parameters, calls b¢ with them and produces an output. Create
bc-script.tar.gz tarball containing a folder with be-device. sh[L. [§] file.

When benchmark is finished results parsing phase is started. Each bench-
mark (not Functional test) should provide a special python parsing script called
parser.py that defines how to parse results. All you should do is to fill a
cur_dict dictionary with {subtest: wvalue} pairs and call plib.process_
data with respecitve arguments:

ref_section_pat : regexp that describes the format of threshold expressions
cur_dict: : dictionary containing {subtest: value} pairs with test results;
m: plot type. ’s’ - single, 'm’ - multiple

label: axis label

See [L. |§] for a simple script that parses two bc outputs.

Core script common . py checks the values to agree with reference values that
should be in reference. log file in the directory where main test script resides.
See [L. for sample reference.log file asserts both results must be greater
that 0.

Test integration is complete. Now you should be able to locate test under
Benchmarks tab in main page.

5.4 Adding test to frontend
The simpliest way to add a benchmark in frontend is using one as a template.
1. From main page click on New Test;
2. Fill in Test name input field;
3. Choose Copy ewisting Test combo box;
4. Enter test name to the Copy from text field. For example, Benchmark.bonnie;
5. Press OK button.

You will be forwarded to the test configuration page. There are a lot of
parameters there, but you only need to set up a few of them:

Description: Textual description of the test;

TESTPLAN: (a string parameter) path to the test plan. Not mandatory. But
we will use one for that sake of demonstration. Put testplans/testplan_bc_expl.json
there.

Execute shell: bash script that will be executed when test is run.
Put source ../tests/$JOB_NAME/bc-script.sh there.

12

5.4.1 Adding plot paramters to tests.info

Plot plugin needs to know which parameters it should display. It uses tests.info
file for that purpose. Open FUEGO_ENGINE_PATH/logs/tests.info and add the
following line: "bc": ["resultl","result2"]. Make sure you meet json syntax
this file uses.

This line says to draw result! and result2 values on the plot.

5.5 Conclusion

So, below is the list of all components our benchmark uses.

spec file Benchmark.bc.spec|L. |§|| that contain list of various options that
generate variables for testing;

testplan files testplan_bc_exp{1,2}.json [L.[3], [L.[d] that contain lists of
specifications should be used for test(s);

test script bc-script.sh[L. 7] that runs all top-level commands;
tarball with bc-device.sh[L. [§] file that does actual testing on device;

parser.py [L. E[] that parses the results and gives them to core parsing compo-
nent that prepares data for plots and reports;

reference.log [L.[L0] that contains reference values then benchmark results are
checked against;

tests.info should be modified to include values should be drawn on plot.

13

6 Base classes and overlays

This section describes base classes and overlays concept, how to write ones and
mechanism implementing them.

6.1 Base class format

Base class is a special file similar to shell script with definitions of basic pa-
rameters. It has special fields OF .NAME and OF .DESCRIPTION that set base class
name and description respectively. You can have as many base classes as you
want. We provide base classes for boards and distributions.

6.2 Overlay format

Overlay file has simple format, similar to that of the bash shell. It has two extra
syntactic constructs:

inherit is used to read and inherit the base class config file.
Example: inherit ‘‘base-file”. It is possible to override functions and
variables of base class.

include is used to include all contents of base class config file. No variables
and functions overriding is permited.

override override-func are used for overriding base variables and functions.
Syntax:

override-func ov_rootfs_logread() {
commands

}

override VARIABLE new_value

6.3 Overlay and class relationship example

Simple class and overlay relationship is shown in [F.[1]. base-distrib class defines
a function

ov_rootfs_logread
and two variables:

LOGGER_VAR,

BASE_VAR.

nologger.dist overlay redefines ov_rootfs_logread function and LOGGER_VAR
variable. In the end prolog.sh contains overriedden function, overridden LOGGER_VAR
variable and vanilla BASE_VAR variable.

14

prolog.sh

override-func ov_rootfs_logread() {
echo "new logger func"

h
LOGGER_VAR="override val"

BASE_VAR="basevar"

base-distrib.jtaclass

nologger.dist
inherit "base-distrib"

OF.NAME="base-distrib"

function ov_rootfs_logread() {
echo "logger func"

¥

override-func ov_rootfs_logread() {
echo "new logger func"

¥

LOGGER_VAR="baseval"

override LOGGER_VAR="override val"

BASE_VAR="baseval"

Figure 1: Simple base class and overlay example

6.4 Fuego classes and overlays organization

ovgen.py script takes a number of base class and overlay files and produces
prolog.sh script file that is executed before each test is run. There are two
conceptes implemented using the scheme:

1. Distribution - defines commands for basic actions on device
2. Board - specifies how to communicate with the device

[F. 2] displays this scheme from top-level perspective.

distribution board
overlay: nologger.dist overlay: minnow.board
T -~
s | ~ .
linherit inherit "~ < include
A \ ol v RSN
class: base-distrib.jtaclass Iscript: ovgen.py class: base-board.jtaclass class: base-params.jtaclass

A
shell: prolog.sh

Figure 2: Fuego Base classes and overlays from toplevel perspective

15

6.4.1 Base distribution class

base-distrib is the base class (See that defines functions necessary for work-
ing with system. It is located in overlays/base/base-distrib.fuegoclass
file.

It defines the following functions:

ov_get_firmware: get kernel version;

ov_rootfs_reboot: reboot system;

ov_rootfs_state: get uptime, memory usage, mounetd devices, etc;
ov_logger: put string to syslog;

ov_rootfs_sync: sync filesystem;

ov_rootfs_drop_caches: drop FS caches;

ov_rootfs_oom: adjust oom;

ov_rootfs_kill: kill specified processes;

ov_rootfs_logread: get syslogs.

You can redefine these functions in your distib overlay file that inherits base-
distrib class. Default distrib overlay base.dist just inherits base class with no
modifications.

6.4.2 Base board class

base-board is the base class that defines functions necessary for working with
system. It is located in overlays/base/base-distrib.fuegoclass file.

ov_transport_get: get specified file from board;
ov_transport_put: copy specified file to the board;

ov_transport_cmd: run command on board;

You can redefine these in your board overlay for non-standard methods for
communicating with device.

16

7 Test plans

Test plans is the core feature of Fuego. They provide the very flexibility in
configuring tests to be run on different boards and scenarios. This section
describes how test plans work and their implementation.

7.1 Spec file format

Spec file format uses json syntax. It uses the following format:

{

"testName": "name of test",
"specs": [
spec entries
{
"name":"spec name",
"variablel":"valuel",
"variable2":"value2",
"variableN":"valueN",
},

Listing 1: Spec file format

Each spec file contatins test name and number of spec entries for this test.
Each spec entry has a name and a list of variable/value pairs that become
TESTNAME_VARIABLE=""VALUE” in prolog.sh whenever this spec is chosen in test
plan. VALUE could be bash variable reference as well, since it will be expanded
during runtime. For example it could reference block device (e.g. $SATA_DEV)
from board config file.

7.2 Test plan file format
Test plan file format uses json syntax. It uses the following format:

{

"testPlanName": "name of test plan",
"tests": [
#test spec entries
{
"testName": "name of test",
"spec": "spec name"
}’
]

17

Listing 2: Test plan file format

Each test plan file contains a number of test spec entries, each specyfing
which spec should be used with given test. Testplans are usecase oriented, e.g
there could be test plan for number of tests to for running on sata device (defined
in board file).

Test plan (as for now) does not denote which tests will be run, rather it
specifies which environment variables should be generated in prolog.sh. This
is useful in batch runs (TODO: reference here) when multiple tests are run with
same prolog.sh file.

7.3 The algorithm
These are the steps taken by ovgen.py script with regard to test plan processing:

1. parse spec files in overlays/specs directory;
2. parse test plan file that is specified via TEST_PLAN environment variable;
3. For each test entry TE in testplan:

(a) Locate the specified test spec SP among all test specs;
(b) Generate all VARIABLE="VALUE”’ from SP to prolog.sh

See [F.

7.4 Test plan / test spec relationship example
Below is the simple example of test plan generation. See [F.

1. User specifies testplan_sata.json in TEST_PLAN envirnoment variable
before running test;

2. ovgen.py script reads all test spec files from overlays/specs as well as
specified test plan file;

3. reads Benchmark.Bonnie entry where sata spec is specified;
4. reads sata spec from inside Benchmark.bonnie. spec file;

5. generates BENCHMARK_BONNIE_MOUNT_BLOCKDEV and BENCHMARK_BONNIE_MOUNT_POINT
variable definitions and writes them to prolog.sh file;

18

Environment Variables

TEST_PLAN | testplanl.json

test planl

testName| testl

testName| test2

test plan2

spec

testName| testl

testName| test2

tl:specl spec t2:specl

|

spec tl:spec2

spec t2:spec2

‘ -

spec

l testl specs e \
‘/

test2 specs I

variablel | valuel

tl:specl spec tl:spec2

variablel | valuel

spec t2:specl

spec t2:spec2

variableN | valueN

variablel | valuel

variableN | valueN

variablel | valuel

variableN | valueN

variableN | valueN

script: ovgen.py

shell: prolog.sh

Figure 3: Testplans top level scheme

19

Environment Variables

»| testplan_sata.json (SATA test plan)

, testPlanName

testplan_sata

TESTPLAN | testplan_sata.json

1

testName

Benchmark.Bonnie

spec

sata

Bonnie SATA test spec

testName Benchmark.Bonnie
hame sata
MOUNT_BLOCKDEV $SATA_DEV
MOUNT_POINT $SATA_MP

prolog.sh

BENCHMARK_BONNIE_MOUNT_BLOCKDEV=$SATA_DEV

BENCHMARK_BONNIE_MOUNT_POINT=$SATA_MP

Figure 4: Simple testplan example

20

8 Reports

This section describes how reports are implemented.

21

9 Listings

{
"testPlanName": "testplan_bc",
"tests": [
{
"testName": "Benchmark.bc",
"spec": "bc-expl"
}]
X
Listing 3: testplan_bc_expl.json file
{
"testPlanName": "testplan_bc",
"tests": [
{
"testName": "Benchmark.bc",
"spec": "bc-exp2"
}]
}
Listing 4: testplan_bc_exp2. json file
if ["${PLATFORM}" = "intel-minnow"];
then

SDKROOT=$FUEGO_ENGINE_PATH/tools/intel-minnow/
sysroots/core2-32-osv-linux/

environment script changes PATH in the way
that python uses 1libs from sysroot which is
not what we want, so save it and use later

ORIG_PATH=$PATH

PREFIX=1i586 -osv-1linux

source $FUEGO_ENGINE_PATH/tools/intel-minnow/
environment -setup-core2-32-osv-1linux

HOST=arm-osv-linux-gnueabi

unset PYTHONHOME
env -u PYTHONHOME

Listing 5: intel minnow tools section

"testName": "Benchmark.bc",
"specs":

22

{
"name":"bc-expl",
"EXPR1":"2x2",
"EXPR2":"3%3"

}’

{
"name":"bc-exp2",
IIEXPRII . ll2+2l| ’
"EXPR2":"3+3"

X

Listing 6: Benchmark.bc.spec file

#!/bin/bash
tarball=bc-script.tar.gz

function test_build {
echo "test compiling (should be here)"

}

function test_deploy {
put bc-device.sh $FUEGO_HOME/fuego.$TESTDIR/
}

function test_run {
assert_define BENCHMARK_BC_EXPR1
assert_define BENCHMARK_BC_EXPR2
report "cd $FUEGO_HOME/fuego.$TESTDIR; ./bc-device
.sh $BENCHMARK_BC_EXPR1 $BENCHMARK_BC_EXPR1"

../scripts/benchmark.sh

Listing 7: bc-script.sh file

#!/bin/bash

BC_EXPR1=8§1
BC_EXPR2=8§1

BCl=‘echo $BC_EXPR1 | bc¢

BC2=‘echo $BC_EXPR2 | bc¢
echo "$BC1,$BC2"

23

Listing 8: bc-device. sh file

#!/bin/python
import os, re, sys, json

sys.path.insert (0, ’/home/jenkins/scripts/parser’)
import common as plib

cur_dict {}
cur_file open(plib.CUR_LOG,’r?)
print "Reading current values from " + plib.CUR_LOG +

ll\n"
ref_section_pat = "~“\[[\w_ .J+.[glel{2}\1"
raw_values = cur_file.readlines ()

results = raw_values[-1].rstrip("\n").split(",")
cur_file.close ()

results [0]
results [1]

cur_dict["result1"]
cur_dict["result2"]

sys.exit (plib.process_data(ref_section_pat, cur_dict,
’s?, ’value’))

Listing 9: parser.py file

[resultl|gel
0
[result2|ge]
0

Listing 10: reference.log file

24

	Introduction
	Installation
	Prerequisites
	Running install script
	Installing toolchains and sysroots
	Using meta-fuego OE layer for generating toolchain

	Configuring tools.sh file
	Using custom toolchain

	Boards configuration
	Adding a target in Jenkins interface
	Writing the board config overlay

	Running tests
	Running single tests
	Running a group of tests
	Viewing PDF reports

	Adding a sample test
	Adding Test Plan files
	Adding spec file
	Adding test script
	Adding test to frontend
	Adding plot paramters to tests.info

	Conclusion

	Base classes and overlays
	Base class format
	Overlay format
	Overlay and class relationship example
	Fuego classes and overlays organization
	Base distribution class
	Base board class

	Test plans
	Spec file format
	Test plan file format
	The algorithm
	Test plan / test spec relationship example

	Reports
	Listings

