Tips for Writing
Good Tests
for Linux

Tim Bird
Fuego Test System Maintainer
Sr. Staff Software Engineer, Sony Electronics

N) Outline
Fuego

® Test ecosystem problems

® Test frameworks
* LTP
* kselftest
* Fuego
® Attributes of a good test
®* Tips
® Resources

$)

4 7) Test ecosystem problems
Fuego

® Not enough test sharing
* Lots of test frameworks

* Some tests are available
e LTP and lots of individual and benchmarks exist

* Many tests are not shared!

®* Why aren’t more aspects of QA cycle
shared?

* Many in-house tests use custom test rigs or
specialized hardware

* Interface between DUT, test system and test is
not standardized

N) Existing Test problems
Fuego

®* Problems with existing Open Source tests
* Learning curve
* False positives
* Useless tests

)
Fuego

® For any particular test, the QA engineer
must learn:

* How to build, install and run the test

°* How to customize the test for the local
environment

°* How to interpret results

® Developers need to:

* Reproduce results
* Have 3" parties reproduce results

* Report issues upstream

Learning curve

)

Fuego

® Bad or missing dependencies

°* LTP tests often don't do a good job of checking
dependencies

N Some tests are top_sensitive to test
environment conditions

°* Extra load on the machine will cause
benchmarks to behave wildly

* Bad network, bad flash, server unavailability
cause false positives

False positives

),

Fuego

® Tests an attribute so basic, the test never fails

® Tests conditions that are unrelated to required
behavior

® Tests conditions that are already exercised

just by booting the DUT and executing the test
framework

® ex: open syscall
® Tests something rare and unlikely

* May cost more to execute than it's worth to find a
bug

Useless tests

$)\
Fuego

® Need to have tests that are:
* Well-documented
* Easier to automate
* Handle building and installation automatically
* More robust
* Handle dependencies, skip problematic tests

* Sharable with others
* Work in many scenarios
* Work on many devices
* Easily customized

Solutions

) Test Frameworks
Fuego

® LTP
® Linux Test Project

® kselftest
* Kernel selftest (unit tests)

®* Fuego
* AGL/LTS test system
* Like a test package system

1))
Fuego

® Is a big “umbrella” project, with lots of tests

® Provides helper functions for setup, results
reporting, cleanup

LTP (Linux Test Project)

§),\
Fuego

®* Mostly C and posix shell tests of kernel and
core system functionality

* No benchmarks

® Has lots of tests (>3000) in 3 broad
categories
* functional, posix conformance, realtime

* Hard to assess coverage
* New syscalls and behaviors show up every release
» It's hard to keep up
® Heavy historical focus on testing error
conditions

LTP introduction

)
Fuego

® Tests can be run individually, or in groups,
or stress configurations

® Itp-pan — run a named collection of tests

* Optionally with multiple simultaneous instances

* Optionally repeatedly
* for a count, or
* for a period of time

* (Can customize command-line parameters

® Itprun — runs groups of tests

* Many groups defined:
* syscalls, input, fs, net, math, numa, etc.
* Qver 80 groups of tests

Included test harness

)
Fuego

LTP output

Individual test results schema:

TPASS - test passed (result was as expected or within tolerance)
TFAIL — test failed (result was unexpected or out-of-tolerance)

TBROK - test case broken (missing precondition, such as resource
unavailable)

TCONEF - test configuration not satisfied, such as machine type or kernel
version.

TINFO — provides additional information about a test result

TWARN — provides additional information about a test condition (indicating
undesirable situation), but that does not affect the test result

Additional meta-data from harness

command line, duration, system times, exit
code, etfc.

§),\
Fuego

® umount02
* Sample output:

LTP example test

tst device.c:213: INFO: Usm? test device LTP_DEV="/dev/loop0'

tst test.c:792: INFO: Timeout per run is Oh 05m 00s

tst mkfs.c.75: INFO: Formatting /dev/loop0 with ext2 opts=" extra opts="
mke2fs 1.42.13 (17-May-2015

umount02.c:72: PASS: umount() fails as expected: Already mounted/busy: EBUSY
umount02.c:72: PASS: umount() fails as expected: Invalid address: EFAULT
umount02072 PASS: umount() fails as expected: Directory not found: ENOENT
umount02.c:72: PASS: umount() fails as expected: Invalid device: EINVAL
umount02.c:72: PASS: umount() fails as expected: Pathname too long: ENAMETOOLONG

Summary:
assed 5
ailed 0

skipped O
warnings 0

1))

Fuego

static void setup(void)

Example setup & cleanup

{
memset(long_path, 'a', PATH _MAX + 1);
SAFE_MKFS(tst_device->dev, tst_device->fs_type, NULL, NULL);
SAFE_MKDIR(MNTPOINT, 0775);
SAFE_MOUNT(tst_device->dev, MNTPOINT, tst_device->fs_type, 0, NULL);
mount_flag = 1;
fd = SAFE_CREAT(MNTPOINT "file", 0777);

}

static void cleanup(void)

{

if (fd > 0 && close(fd))

tst_ res(TWARN | TERRNO, "Failed to close file");
if (mount_flag)

tst umount(MNTPOINT);

N, Example setup & cleanup
Fuego

static void setup(void)

{

“path, 'a', PATH_MAX + 1);

SAFE_MKFS(tst_device->dev, tst_device->fs_type, NULL, NULL);
SAFE_MKDIR(MNJPOINT, 0775);

SAFE_MOUNT(tsf_device->dev, MNTPOINT, tst_device->fs_type, 0, NULL);

fd = SAFE CREAT(MNTPOINT "ffile", O777);
}

static void cleanup(void)
{
if (fd > 0 && close(fd))
tst res(TWARN | TERRNO, "Failed to close file");

if (mount_flag
NTPOINT);
}

)
Fuego

® Use SAFE_ macros for automatic error
handling

® Clean up in opposite order of resource
allocation

® Use tst_* helper functions
* There are many, to handle common operations

setup and cleanup

N) Example test
Fuego

static void verify_umount(unsigned int n)

{
static struct tcase { struct tcase *tc = &tcasesin];
const char *err_desc; TEST(umount(tc->mntpoint));
const char *mntpoint; if (TESI=REFLRN = -1) {
int exp_errno; @
} tcases[] = { umount() succeeds unexpectedly");
{"Already mounted/busy", MNTPOINT, EBUSY}, return;
{"Invalid address", NULL, EFAULT}, }
{"Directory not found", "nonexistent", ENOENT}, if (tc->exp— = —
{"Invalid device", "./", EINVAL}, tst_res(TFAIL | TTERRNO,
{"Pathname too long", long_path, "umount() should fail with %s",
ENAMETOOLONG} tst_strerrno(tc->exp_errno));
% return;

tst_res(TPASS | TTERRNO,
"umount() fails as expected: %s",
tc->err_desc);

1810/23/2014 PA1

$)

4 1) test details
Fuego

® verify_umount is the main ‘test’ routine

* |n this case, it is called with the sub-testcase
number

® tst res() is used to report results

* Should be called once per sub-testcase (with
actual result)

* Can be called multiple times with INFO

1))

Fuego

static struct tst_test test = {
tid = "umount02",
tcnt = ARRAY_SIZE(tcases),
.needs_root =1,
.needs_tmpdir =1,
.needs_device = 1,
.setup = setup,
.cleanup = cleanup,
test = verify_umount,

Example struct tst test

)

Fuego

® Define a set of test attributes

* Including function pointers for setup, cleanup
and test

* .tid defines the test identifier

* Can specify needed resources, which are
automatically created and removed
® There is no “main” function

* actual ‘'main’ calls the routines specified in the
tst test struct.

struct tst test

§),\
Fuego

® https://github.com/Linux-test-project/Itp/wiki

* https://github.com/linux-test-project/ltp/wiki/C-
Test-Case-Tutorial

® Intro article by Cyril Hrubis (project
maintainer) on LWN.net
* https://lwn.net/Articles/625969/

® Lightning talk — Introduction and status at
Fosdem 2018

* https:/[fosdem.org/2018/schedule/event/linux_te
st_project/

LTP Resources

§),\
Fuego

®* Has a lot of support for writing a good test
® LTP needs more tests, to keep it relevant

®* Please add stuff to it, and fix anything you
find that is broken

® Some project ideas:
* Convert old tests to new API

* Document specific test cases
* Can do this in Fuego — more on this later

* Clean up and add to developer docs
* New tests (Linux commands)

LTP conclusion

)

Fuego

®* |s the kernel unit test framework

* |sin the kernel source tree
* tools/testing/selftest

® Supports local execution, or remote
installation
®* (Can build tarfile for installation on external DUT

* (Can cross-compile (just like kernel)

® (Can select individual test sets to build or run
* make TARGETS="size timers” kselftest

® About 350 source files in 52 directories
® Where kernel devs put their own unit tests

kselftest Introduction

§),\
Fuego

® Is super-convenient if you are a kernel
developer

® Does not provide a harness or helpers for
setup, cleanup, common operations

¢ Started as ad-hoc collection of kernel sub-
system unit tests

* It's still pretty ad-hoc...
® |Is migrating to common output format

kselftest

1))
Fuego

* Sorry....
® Each test is different

® There is no “typical” example, due to lack of
API

® Each one written from scratch

Example kselftest test

N) Output format
Fuego

® TAP is preferred output format
* Test Anything Protocol (version 13)
* See https://testanything.org/
°* Example:

1.4

ok 1 - Input file opened _

not ok 2 - First line of the input valid

ok 3 - Read the rest of the file _

not ok 4 - Summarized correctly # TODO Not written yet

® Use ksft_* output routines, to get TAP
automatically (see kselftest.h)

* ksft test result pass, ksft test result fail, etc.

)
Fuego

® https://www.kernel.org/doc/html/latest/dev-
tools/ksefltest.html
from Documentation/dev-tools/kselftest.rst

® https://blogs.s-0sg.org/introduction-testing-
linux-kernel-kselftest/

kselftest resources

)
Fuego

® Don't assume you're building or running on
the latest kernel version

* Don't rely on features of current kernel version

* Allow developers of earlier kernels to run latest
kselftest

® Check for dependencies at runtime and
notify user if they're not fulfilled
* Check for root user
* Check kernel configuration

kselftest tips

)

Fuego

® Fuego =
* host test distribution +
* a bunch of tests + test wrappers +
* Jenkins interface
* ALL inside a docker container

® Is intrinsically host/target

® Fuego is like the Debian of QA software

* A distribution of tests, each one of which can be
used individually (and is maintained individually)

® About 150 test suites and benchmarks so far

Fuego Introduction

)

Fuego

® Is more like a packaging system than an
individual test
® fuego test.shis a wrapper for:
* build (cross-compile)
* deploy (put on target)
® run
* collect results

® Can also provide a parser to:
* Collect individual test case data
* Create standardized output (run.json file)
* Apply pass criteria

Fuego test

N Fuego Architecture

Fuego

Host machine:

Docker container:

Test source

Fu_ego Scripts
Volume Build system
Mount

Jenkins

Toolchains
Config
Builds
Logs

P

Target board:

Test program
(deployed)

§),\
Fuego

® A Fuego test is usually a wrapper around an
existing test:

* Example existing tests: iozone, LTP, bonnie,
iperf, Dhrystone, cyclictest

® (Can also write a new individual test
* For simple tests

* Shell commands inside a Fuego test_run
routine, or simple standalone script

® Consists of: fuego test.sh and parser.py
® Also: spec.json, criteria.json, and other files

Fuego Test

1),

4) Fuego test example
Fuego

tarball=hello-test-1.1.tgz

function test_pre check {I_
assert_define FUNCTIONAL HELLO WORLD ARG

function test_build {
make

function test de on&
put hello $BOARD TESTDIR/fuego.$TESTDIR/

function test_run
report "cd $BOARD TESTDIR/fuego.$TESTDIR; \
/hello SFUNCTTONAL_HELLO WORLD_ARG"

function test_processin% _i
log_compare "$TESTDIR" "1" "SUCCESS" "p"

1),
Fuego

® Every test produces run.json file
* test meta-data, logs, results in JSON format

® Results schema:
* PASS

FAIL

ERROR

SKIP

Fuego output

§),\
Fuego

® Don’t write your DUT-based test in Fuego
* ldon’t care if you don’t write a Fuego test
* |'d rather you didn't
* Write something for LTP or kselftest, and the
whole industry benefits

® If writing a multi-node test, consider Fuego
* Fuego supports host-client operations
* serial, network

* We need standard interfaces for other hardware
control

* Probably Board Control summit at Plumbers

Fuego advocacy

)
Fuego

®* Fuego web server:

° http:/[fuegotest.org/

* wiki: http://fuegotest.org/wiki
® Mailing list:

* https://lists.linuxfoundation.org/mailman/listinfo/fuego
®* Repositories:

* https://bitbucket.org/tbird20d/fuego

* https://bitbucket.org/tbird20d/fuego-core

Fuego Resources

)ll Tim’s scorecard

Fuego

Well-documented

Handles builds and
installs

Test scheduling

Helper routines
(setup, cleanup, etc.)

Handles dependencies
Customizable
Consistent output

Test ids
Visualization

APIs - some
tests - no

yes

no
lots

some
some

yes® (in
different groups)
numbers only

no

yes

no

few

no
no
no* (TAP started)

numbers only
no

APls - yes
tests - in-progress
yes+

yes (via jenkins)
some

lots
yes
yes

some strings

yes

$)

4 %) Choosing a framework
Fuego

® For white-box testing of the Linux kernel,
use kselftest

®* For black-box testing, use LTP
* Especially for kernel behavior testing

® For benchmarks, extend or customize one of
the current tools

* xfstests, mmtests, iperf, etc.

® For dual-machine tests, use Fuego
* Intrinsically supports host/target test operation

* Needs more support for API for hardware
connections (e.g. bus control, audio, video)

N) Tips for good tests
Fuego

Produce good output
Make tests universal
Avoid false positives
Test something useful

N, Test output

Fuego

® 6 elements of good test output:
* Testcase identifier (tguid)
* Description
* Result (pass/fail)

* Behavior
* Expected behavior
* Seen behavior

* Interpretation

® Distinguish results from errors
* Errors are problems that interfere with the test

N Tips for test output
Fuego

® Make results machine parsable, but human
readable

* Use unique strings for results output (e.g. TPASS)

* Use common results schema:

* Use the same strings to indicate:
* pass, fail, error, skip

* Use unique and persistent test case identifiers
* Use line-based output
* OQutput should be greppable.

* Results exposition should follow the results or
preced the results, but NOT BOTH

* This makes the parser much easier.

$)

4 %) Test case identifiers
Fuego

® Don't just use numbers

® TGUID = test globally unique identifier
* LTP.syscall.umount02.03
* LTP.syscall.umount02.try _nonexistent_ dir

® Make the identifier persistent
°* Thatis, id should be the same run-to-run

°* BAD: list of conn%ctions is read from dynamic
source, and numbers are used to indicate the
network test to each one:

* ‘net test1” (=testto google.com)

* ‘net test2’ (=testtoamazon.com)
* Better:

* ‘net_test connect to google’

* ‘net_test connect to amazon’

N
Fuego

® Limit the languages used:
* Native program or POSIX shell

® Don’t assume DUT capabilities
* Check for dependencies

® Use minimal resources

Make tests universal

)

Fuego

‘ Complled language
Usually C (most common denominator)
* Provide source, not binaries

* Make source cross-compilable

* Don'’t assume architecture of DUT
* Statically link, if possible

* Avoid library dependencies

®* POSIX shell
* POSIX features only (no, not bash)

* Use “checkbashisms” tool to find things that are
unsupported by POSIX shell standar

* Then get rid of them

® If another interpreted language, provide virtual
machine with test

Limited Languages

)
Fuego

®* Avoid dependencies, where possible
® C programs:
* Limit usage of library calls: POSIX subset
* Depends on the test, of course

* OSkit defines a good minimal C library subset

. : cs.utah. fl kit/html/oskit-
w\’g\? V\{é\mvxvhc%?n F ah.edu/flux/oskit/html/oski

. Ignore_ tr_le weird parts of memory allocation (14.5)
* Assume minimal OS features (reduced syscall set)

® Shell scripts:

* Limit usage of external commands

* Recommended minimum list;

- cat, df, find, grep, free, head, mlﬂ?ir, mount, ps, reboot, rm,
rmdir, route, sync, tee, test, touch, true, umount, uname,
uptime, xargs

* Limit use of /proc and /sys

Use minimal resources

$) \ Detect dependencies
Fuego

. V\(Irlw)en you have dependencies (and you

will)...
®* Detect dependencies before test

* Use dependency system

* Probe system and abort early, with message
®* Missing dependency = skip, not fail

* Let user specify if a testcase should be run

* ie Support skiplists, or auto-handle skips

)
Fuego

®* Don’t assume capacity or speed of DUT
* Don’t hardcode loops or sizes

* Automatically detect loops or sizes, if needed

* Probe for capabilities (disk size, mem size, CPU
speed)

* Consider using a pre-test run (ie calibration run), to
adjust loops or sizes

°* As a last resort, use test parameters to adjust
loops or sizes
* NOTE: test parameters are a royal pain to maintain.

Please document not just their presence, but when
and why they would be used

Don’t assume DUT capabilities

)
Fuego

®* Make tests usable in a wide variety of
circumstances

* Parameterize tests

* Allow results criteria external to test

* Required for benchmarks, to avoid dependency on
the speed, latency, etc. of particular machine

* Most benchmarks just produce results, but don't
evaluate them

* Fuego allows specifying pass criteria for
Benchmarks (criteria.json file)

Make tests reusable

Fuego

Parameterize tests

Parameters allow for adapting your test to
circumstances

* Should not be used as a way of avoiding writing
parts of test that are difficult

* Allows a single test to be used in different
circumstances

Parameters must be well-documented
* This is often a big deficiency

Use command line arguments for
parameters

* Don’t use shell environment variables

)
Fuego

What does it test?
How does it test it?
What are the expected results?

What to do if bad results are seen?
* What config items can be changed?
* What /proc or /sys knobs can be adjusted?

* What hardware can be changed? (e.g. mmc,
antenna, etc.)

* Where to report failures?
®* What do parameters adjust?

Documenting Tests

$)

4 %) Test automation
Fuego

® Things that make a test automatable:
* Uses standard build tropes (configure, make)
* Is self-contained
* Creates needed resources, cleans up after self

* Has easily parsed output for results
determination

* Has consistent output patterns
* |s deterministic
* Does not require human setup or input

N) Test usability
Fuego
® Things that make a test usable:

* Indicates what it is testing
* Gives additional information when test fails

)

- Test robustness

Fuego

Check for dependencies

Create needed resources at test time
* But this can require time

Tune for DUT capabillities

* Capacity, speed, RT latencies

Handle errors gracefully

Clean up after test

%),
Fuego

® Test behavior that your program relies on
* Stuff that would break your app if it changed

Don’t just test everything in the spec

Don’t test existing behavior if your code doesn't
rely on it

* This just codifies that behavior

® Read your code, not the specs or the system
code, 1o produce a test

®* Make tests for things that broke and were fixed
* Create regression tests
* Ifit broke before, it can break again

Test something useful

N
Fuego

® Use clitest for shell test automation

* Provide a script with command and expected
output

* clitest executes command and compares results
* See https://github.com/aureliojargas/clitest

Miscellaneous

)

My advice and preference

Fuego

Write new functional tests in LTP

* Has a good test library, build system is free

* Has consistent output schema
* Many harnesses already parse LTP output

For existing test, publish it and add Fuego
test for your test

* Fuego can automate it, document it, make the
results sharable, and provide visualization for it

Would like to see kselftest use the LTP test
library

Need board automation standards!

1))\

Fuego

Go forth and test...

Share your tests!

