
ConfidentialPA110/23/20141

Status of Embedded
Linux

Test Standards –
Can Fuego, Lava and

others agree?
September 2017

Tim Bird

Architecture Group Chair

LF Core Embedded Linux Project
1

ConfidentialPA110/23/20142

Outline

• Open source tests and test frameworks for
Linux:
• kselftest, LTP, KernelCI, LAVA, Fuego,

Avacado, kerneltest, zero-day and more...

• Standards:
• To Share infrastructure and Interoperate.

• Areas:
• Test dependencies

• Results formats

• Board control hardware.
• Interfaces to commonly-used utility programs

ConfidentialPA110/23/20143

Open source testing

• Lots of test frameworks
• Still too much left as an exercise to the tester:

• What tests to run?
• How to perform the test?

• How to build the test?
• What parameters to use?

• Test dependencies
• Test results

• Results collection
• Visualization

• Interpretation and analysis
• What do results mean? What is important to look at?

What result should I expect on my board?

• How to automate board control

ConfidentialPA110/23/20144

Tests and Frameworks

• Kselftest

• LTP

• KernelCI

• LAVA

• Fuego

• Avacado

• kerneltest
• zero-day

4

ConfidentialPA110/23/20145

Kselftest

• Unit test system inside kernel source tree

• Recent work:
• Lots more regression tests (preferred place for

syscall compatibility/regression tests (over LTP)

• Converting to TAP (Test Anything Protocol) for
test output

• Support for “make O=<somedir>”
(KBUILD_OUTPUT)

ConfidentialPA110/23/20146

LTP – Linux Test Project

• A huge collection of tests for Linux
• Lots of different areas covered: syscalls,

realtime, posix, etc.

• Some unification of results output

• Fairly complex to build, deploy

• Very difficult to interpret results
• Lots of failure on most boards, due to

configuration, environment, etc.

• Tester has to know what to ignore, and why

ConfidentialPA110/23/20147

Fuego

• Framework for collaborating on tests and test
infrastructure for Linux

• V1.1 features (April 2017)
• Upgrade to latest Jenkins
• Test script refactoring
• Fuego container directory layout change
• About 40 new tests

• V1.2 plans (coming soon)
• Unified output format

• Convert all test results to JSON – KernelCI compatible

• Support LAVA as a transport & board manager
• Test dependency system

ConfidentialPA110/23/20148

Kernelci.org

• Massive build/boot testing for top-of-tree kernel
• Builds hundreds of trees continuously, then reports

any errors

• In many different labs

• http://kernelci.org

• Presentations:
• ELC and ELCE 2016 – by Kevin Hilman

• Linaro Connect:
• Kernelci and lava update - See

https://lwn.net/Articles/716600/

• The most successful public, distributed build
and test system for Linux, in the world!

8

http://kernelci.org/
https://lwn.net/Articles/716600/

ConfidentialPA110/23/20149

LAVA

• Linaro Automation and Validation
Architecture

• Good board control and job scheduling

• V2
• Job files now use Jinja2 templates

• Was previously hand-written JSON

• Jobs are run asynchronously, without polling,

• ZeroMQ is used for communications.

• ReactOBus is used to run jobs from messages.

• Requires more explicit board configuration

ConfidentialPA110/23/201410

Kerneltests

• Builds all architectures and boots on many
(if there’s a qemu for the platform), on a
daily basis
• 14 architectures, 113 platforms

• Summary report for stable release
candidates

• Results at kerneltest.org

ConfidentialPA110/23/201411

0-day

• Large set of tests that are run daily on top-
of-tree

• Large test bed

• Reports build test failures for individual
patches contributed to kernel mailing lists
• Bisects to isolate defective code

• e-mails authors before maintainer gets to the
patch

• 60% of failures reported in 2 hours, 90% in 24h

Produce a spec?

ConfidentialPA110/23/201412

Avacado

• Virtual machine tester

• Lots of interesting features
• test server

• matrix testing

• multiple results format outputs

• Simple interface to Jenkins

ConfidentialPA110/23/201413

Investigation vs Proposals

• Investigation
• Things I’m still researching in the industry:

• List of tests to run

• Test dependencies

• Board control

• Proposals
• Things I’d like to propose standardizing on

• Test Output Format

• Test Results Format
• TGUID

• kernelCI (test_suite/test_set/test_case/measure)

ConfidentialPA110/23/201414

List of tests to perform

• Why needed?
• Different boards and different use cases require

different sets of tests

• Different phases of testing require different tests
(or different test parameters)
• e.g. quick vs comprehensive

• Fuego has: testplan
• json file indicating tests to run, specs, timeouts

• Some plans:
• For AGL (automotive grade Linux)

• For LTSI (long-term stable kernel initiative)

• For generic kernel testing

ConfidentialPA110/23/201415

Test dependencies

• Why needed?
• To avoid wasting time with tests that won’t work

for a given platform

• To document pre-requisites for a test

• What kind of dependencies:
• memory

• kernel configuration

• storage

• sub-systems and libraries

• hardware

ConfidentialPA110/23/201416

Existing support

• 0day:
• need_kernel_headers: true

• need_kconfig

• need_memory

• need_cpu – number of CPUs

• Fuego:
• NEED_MEMORY

• NEED_FREE_STORAGE

• NEED_KCONFIG

• Others?

ConfidentialPA110/23/201417

Dependencies – Notes

• Both 0day and Fuego use declarative syntax
• Suitable for static analysis

• Important for scalability
• Does not require test execution, or even test installation

• Envision an online “test store” with tests that
can be matched against board characteristics
• Tests for specific hardware (e.g. CAN bus)

• Fuego also has some imperative checks:
• assert_define - a test variable is defined

• is_on_target - target has a file, library or program

• is_on_sdk - the sdk has a required library or header

ConfidentialPA110/23/201418

Proposals

• Preferred test output format:
• TAP13

• Test results format:
• TGUID

• KernelCI:
• Test_suite, test_set, test_case, measurement

• Fuego:
• Run.json, criteria.json

ConfidentialPA110/23/201419

TGUID - Test globally unique id

• Define a string that uniquely identifies a
particular testcase or benchmark measure
• Ex: LTP.syscall.abort01.1

• Ex: bonnie.Sequential_Output.Block.speed

• Ex: Interbench.Video.Write

• Useful for data and information interchange

• Similar to web’s URL

• Can refer unambiguously to a test case
• Some issues with this (LTP test types (syscall)

are really like test_sets)

• Aliasing and nesting
• Is unlimited nesting allowed?

ConfidentialPA110/23/201420

TGUID benefits

• Good for discussion

• Good for data mining across frameworks
• Can identify problematical tests

• Can have meta-data about a test case
independent of the framework
• Descriptions

• Analysis

• The first step to sharing information is a
consistent reference mechanism for shared
objects

ConfidentialPA110/23/201421

Output format

• The output from the actual test

• Should be human readable, but machine
parsable

• Is really ad-hoc
• Testers just use whatever they feel like

• Luckily, many are line-oriented, and have fixed
strings corresponding to results (ie. PASS, FAIL,
Error, etc.)

• Kseltest adopting TAP (Test Anything
Protocol)
• Specifically TAP13 - https://testanything.org/tap-

version-13-specification.html

https://testanything.org/tap-version-13-specification.html

ConfidentialPA110/23/201422

TAP – Test Anything Protocol

• See https://testanything.org/

• Very simple
• Plan (1..n) line indicates number of tests

• Test line has result (‘ok’ or ‘not ok’), test
number, description

• Example:

1..4
ok 1 - Input file opened
not ok 2 - First line of the input valid
ok 3 - Read the rest of the file
not ok 4 - Summarized correctly # TODO Not written yet

https://testanything.org/

ConfidentialPA110/23/201423

Results formats (existing)

• Xunit (junit)
• XML

• lists results counts, and error information
• Oddly missing PASS results for individual testcases

• Kernelci
• Test_suite, test_set, test_case, measurement

• Is really the kernelci json API
• See https://api.kernelci.org/schema-test-suite.html

ConfidentialPA110/23/201424

Results parsing

• Abstraction for converting non-standard test
output to standard results format:

• Fuego:
• log_compare() – simple line-oriented parsing
• parser.py() – arbitrarily complex parsing

• input = test program output (test log)
• output = dictionary of {tguid: result}

• result: for measure is numeric, for testcase is PASS, FAIL,
or SKIP

• System constructs run.json with results for test run
• Uses criteria.json file to determine status of test

• Can specify ignored failures

• LAVA/KernelCI: ???

ConfidentialPA110/23/201425

Board and test environment
control

• Power control

• File transfer

• Remote execution

• Hardware control
• Bus control

• Buttons, keys

ConfidentialPA110/23/201426

Interface to external functions

• Tools that provide abstractions:
• wic/mic – image preparation

• pduclient – power control

• ttc – Sony’s board management abstraction tool

• Core interfaces:
• Power control

• Kernel install

• Distro install

• File get/put

• Execute command

• Button control

• Bus control

ConfidentialPA110/23/201427

LAVA core board control
operations

• power_off_command

• power_on_command

• connection_command

• hard_reset_command

• ... other _commands

ConfidentialPA110/23/201428

ttc

• Define a core set of commands for operating
with a target
• get_kernel, get_config, kbuild, kinstall, fsbuild,

fsinstall, reset, reboot, copy_to, run, copy_from,
console, login, rm

• Thin wrapper for abstracting board-specific
operations:
• Fuego has a model of direct interaction with the

target

• LAVA appears to have a “setup and go” model

ConfidentialPA110/23/201429

power control

• LAVA
• pduclient

• snmp_pdu_control

• pdu_control_off

• ipmi_tool

• TTC
• power_control

• echo (to usb-serial ports with specialized
interpreters)

• web-relay

ConfidentialPA110/23/201430

file transfer

• Android: adb put/get

• LAVA:
• scp, ser2net

• Fuego: ov_transport_get, ov_transport_put
• Using serio, scp, and cp

• ttc: copy_to_cmd, copy_from_cmd
• Using scp, cp

ConfidentialPA110/23/201431

command execution

• Android: adb run

• LAVA: connection_command
• usually using ser2net and telnet

• Fuego: ov_transport_cmd
• usually using ssh

• TTC: run_cmd
• usually using ssh_exec or telnet_exec

ConfidentialPA110/23/201432

Un-standardized board control

• Both Fuego and LAVA appear to be missing
button and bus control

• This is required for lots of hardware tests
• plug & unplug devices

• USB switching

• complex boot modes on production devices
• e.g. phone 3-button resets

• re-route devices
• So a machine can load data or prepare file systems

separate from DUT

ConfidentialPA110/23/201433

Other areas

• Test descriptions?
• Human interpretation of results

• criteria files?
• What tests should you expect to fail?

• What tests are flaky and sometimes fail
incorrectly?

• board variables

ConfidentialPA110/23/201434

Next steps?

• How to actually standardize something?

• Just start using the same things and hope
the industry notices? (defacto standards)

• Produce a spec?

• Contribute support for a standard to other
frameworks?
• They are Open Source projects, after all

• Plan an event or summit to coordinate.

ConfidentialPA110/23/201435

Thanks!

35

