
1

How to add test cases on JTA

Copyright (C) 2015 FNST LIMITED
Copyright (C) 2015 FUJITSU TEN LIMITED

2

Abstract
This document is used to demonstrate how to add a regular test case to JTA. The newly added
test case, as an example for this document, is used to test “touch” command. That is to say,
“touch <file>” will be executed on the target machine. If “<file>” is created successfully, the test
passes; otherwise it fails.

3

Important note
This document is a bit obsolete and needs to be updated.

Important details:

• JTA was renamed to Fuego
• Jenkins is configured (by default) to start web interface at

http://IPADDR:8080/fuego

Keeping given changes in mind this document is still useful.

http://ipaddr:8080/fuego

4

1. To make explanation easier, we make some assumptions here:
a) The machine with JTA installed on it will be called “JTA machine” below. The IP address

of JTA machine is 192.168.30.71.
b) The machine, on which the test is supposed to be tested, will be called “target machine”

below. The IP address of target machine is 192.168.30.64.

2. Login to JTA machine as “root” user.

3. Use the following command to check whether “Jenkins” service is working.

/etc/init.d/jenkins status

If message, like “Jenkins Continuous Integration Server is not running”, is showed, please
use the following command to start “Jenkins” service.
/etc/init.d/jenkins start

4. The following table lists the files that should be added or fixed in order to add a test case for

“touch” command.
file usage

(optional)
/home/jenkins/overlays/testplans

used for selecting “spec” for test cases, so
that some variables in test_specs will be set
to satisfy the requirement of the test.

(optional)
/home/jenkins/overlays/test_specs

used for defining some variables for test.
These variables are organized as “spec”. In
different “spec”, variables will be defined
differently

/home/jenkins/tests/Functional.touch/touch-
script.sh

test start point that will be used to setup
the test environment, execute the test and
grab test result from target machine

/home/jenkins/tests/Functional.touch/touch-
device.sh

test program that will be executed on the
target machine to test “touch” command

/home/jenkins/overlays/boards/porter.board configuration of target machine, touch-
script.sh needs this to setup test
environment

/home/jenkins/scripts/tools.sh defining variables used to cross-build
programs for target machine

“/home/jenkins/overlays/testplans” and “/home/jenkins/overlays/test_specs” are optional,
only used when some special variables are needed for certain tests.
More detailed information will be demonstrated in the next several steps.

5. Add “test plan” (optional)
Add “testplan_touch.json” under “/home/jenkins/overlays/testplans”, and write it as the
following example.
cd /home/jenkins/overlays/testplans
cat testplan_touch.json
{
 "testPlanName": "testplan_touch",

name of test plan

name of test

name of test spec

5

 "tests": [
 {
 "testName": "Functional.touch",
 "spec": "touch-exp1"
 }
]
}

6. Add “test spec” (optional)
Add “Functional.touch.spec” under “/home/jenkins/overlays/test_specs”, and write it as
the following example.
cd /home/jenkins/overlays/test_specs
cat Functional.touch.spec
{
 "testName": "Functional.touch",
 "specs":
 [
 {
 "name":"touch-exp1",
 "FILENAME":"touch.file"
 }
]
}

7. Relationship between “test plan” and “test spec”
test plan (testplan_touch.json) test spec (Functional.touch.spec)
#cat testplan_touch.json
{
 "testPlanName": "testplan_touch",
 "tests": [
 {
 "testName": "Functional.touch",
 "spec": "touch-exp1"
 }
]
}

 #cat Functional.touch.spec
{
 "testName": "Functional.touch",
 "specs":
 [
 {
 "name":"touch-exp1",
 "FILENAME":"touch.file"
 }
]
}

name of test

name of test spec

variables for the spec

6

8. Add test script
Create folder “Functional.touch” under “/home/jenkins/tests”, and under the folder add
two files, “touch-script.sh” and “touch-device.sh”.
Follow the example below to write “touch-script.sh”.
cd /home/jenkins/tests
mkdir Functional.touch
cat touch-script.sh
#!/bin/bash
function test_build {
 echo "test compiling (should be here)"
}
function test_deploy {
 put $TEST_HOME/touch-device.sh $JTA_HOME/jta.$TESTDIR/
}
function test_run {
 assert_define FUNCTIONAL_TOUCH_FILENAME
 report "cd $JTA_HOME/jta.$TESTDIR; ./touch-device.sh
$FUNCTIONAL_TOUCH_FILENAME"
}
function test_processing {
 log_compare "$TESTDIR" "1" "PASS$" "p"
 log_compare "$TESTDIR" "0" "FAIL$" "n"
}

. $JTA_ENGINE_PATH/scripts/functional.sh

Follow the example below to write “touch-device.sh”. Be careful, “touch-device.sh” should
gain the executable permission in order to be run on target machine.
cat touch-device.sh
#!/bin/bash
echo "Touch Founction Test!"

file=/tmp/$1

rm –f $file
touch $file

if [-f $file];then
 echo "PASS"
else
 echo "FAIL"
fi

rm –f $file

9. Fix configuration of target machine
Follow the example below to fix porter’s related configuration, “porter.board” under
“/home/jenkins/overlays/boards”.
cd /home/jenkins/overlays/boards
cat qemu-arm.board
inherit "base-board"
include "base-params"

IP address or hostname of target machine

user name for ssh login

password for ssh login, not needed for AGL
yet

test name

test start point

function used to build test
program

function used to deploy test
program to the target machine

function used to execute test
program on the target machine

confirm variables are

function used to handle the log
of executing test program to
decide the result of the test

script that will call above
functions to do the test

test program

file that will be “touch”ed

clean environment to avoid
the file already exists

“touch” the file

if the file exists, output
“PASS”, otherwise, output
“FAIL”

clean enviroment

7

IPADDR="192.168.30.64"
LOGIN="root"
JTA_HOME="/home/a"
#PASSWORD="root"
PLATFORM="porter"
TRANSPORT="ssh"
ARCHITECTURE="arm"

#SATA_DEV="/dev/sda1"
#SATA_MP="/mnt/sata"

#USB_DEV="/dev/sdb1"
#USB_MP="/mnt/usb"

#MMC_DEV="/dev/mmcblk0p2"
#MMC_MP="/mnt/mmc"

If you want to execute the test on other target machine, fix the related “*.board” file. You
can also refer to “jta-guide.pdf” for more detailed information.

10. Fix variable definition used for corss-building
Fix “tools.sh” under “/home/jenkins/scripts”. Variables, like SDKROOT, PREFIX, HOST, and
“source” are used to setup cross-build environment.
cd /home/jenkins/scripts
cat tools.sh
……
elif ["${PLATFORM}" = "porter"];
then
 ORIG_PATH=$PATH
 PREFIX=arm-poky-linux-gnueabi
 source /opt/poky-agl/1.0.0/environment-setup-cortexa15hf-vfp-neon-poky-linux-
gnueabi
 SDKROOT=/opt/poky-agl/1.0.0/sysroots/cortexa15hf-vfp-neon-poky-linux-gnueabi/
 HOST=arm-poky-linux-gnueabi

 unset PYTHONHOME
 env -u PYTHONHOME
......

11. Logon to JTA web interface. The URL should be “192.168.30.71:8080” here:

selected by “PLATFORM”
variable in “*.board”. Check step

8

12. Click “Functional” tag, then click “New Test” to create a new test case

13. Input “Functional.touch” for “Test name”. Then check “Copy existing Test”, input
“Functional.bzip2”. After all, click “OK”.

9

14. Fix configurations related to the test
1) test description:

10

2) test name:

3) test start point, it should be “touch-script.sh” here:

11

4) click “Apply”, then the new test case is created:

15. Clike “Run Test Now” on the left side.

12

Choose “porter” for “Device”, check “Rebuild” and choose “testpaln_touch” for TESTPLAN.
Then click “Run test” to start the test. The test progress will be showed in “Test Run History”.

13

16. If the test succeeded, a line with a green icon in front of it will be showed; otherwise, a red

icon will be showed.
Click this line to get more information about this test.

14

17. Click “Console Output” on the left side, log of the test will be showed.

	Important note

